Trigonometry

FunctionInverseHyperbolicInverse Hyperbolic
CosArccosCoshArcosh
SinArcsinSinhArsinh
TanArctan, Arctan2TanhArtanh
  • Degrees - A constant, $$\frac{\pi}{180} = 0.017453292519943295769236907\ldots$$.

  • FromPolarCoordinates - Converts (radius, angle) -> (x, y)

  • ToPolarCoordinates - Converts $$(x, y) \longrightarrow (radius, angle)$$


  • Hypot - $$\operatorname{Hypot}(x,y) = \sqrt{x^2+y^2}$$

  • Haversine = $$\operatorname{Haversine}(z) = \sin(\frac{z}{2})^2$$. The Haversine function was important in navigation because it appears in the haversine formula, which is used to reasonably accurately compute distances on an astronomic spheroid given angular positions (e.g., longitude and latitude).

  • InverseHaversine = $$\operatorname{InverseHaversine}(z) = 2 \operatorname{Arcsin}(\sqrt{z})$$