Function Inverse Hyperbolic Inverse Hyperbolic
Cos Arccos Cosh Arcosh
Sin Arcsin Sinh Arsinh
Tan Arctan, Arctan2 Tanh Artanh
  • Degrees - A constant, $$\frac{\pi}{180} = 0.017453292519943295769236907\ldots$$.

  • FromPolarCoordinates - Converts (radius, angle) -> (x, y)

  • ToPolarCoordinates - Converts $$(x, y) \longrightarrow (radius, angle)$$

  • Hypot - $$\operatorname{Hypot}(x,y) = \sqrt{x^2+y^2}$$

  • Haversine = $$\operatorname{Haversine}(z) = \sin(\frac{z}{2})^2$$. The Haversine function was important in navigation because it appears in the haversine formula, which is used to reasonably accurately compute distances on an astronomic spheroid given angular positions (e.g., longitude and latitude).

  • InverseHaversine = $$\operatorname{InverseHaversine}(z) = 2 \operatorname{Arcsin}(\sqrt{z})$$