Arithmetic
Constants
Symbol | Value | |
---|---|---|
ExponentialE | 2.7182818284\ldots | Euler's number |
MachineEpsilon | 2^{−52} | The difference between 1 and the next larger floating point number. See Machine Epsilon on Wikipedia |
CatalanConstant | = 0.9159655941\ldots | \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} See Catalan's Constant on Wikipedia |
GoldenRatio | = 1.6180339887\ldots | \frac{1+\sqrt{5}}{2} See Golden Ratio on Wikipedia |
EulerGamma | = 0.5772156649\ldots | See Euler-Mascheroni Constant on Wikipedia |
Relational Operators
Function | Notation | |
---|---|---|
Equal | x = y | Mathematical relationship asserting that two quantities have the same value |
Greater | x \gt y | |
GreaterEqual | x \geq y | |
Less | x \lt y | |
LessEqual | x \leq y | |
NotEqual | x \ne y |
See below for additonal relational operators: Congruent
, etc...
Functions
Function | Notation | |
---|---|---|
Add | a + b | Addition |
Subtract | a - b | Subtraction |
Negate | -a | Additive inverse |
Multiply | a\times b | Multiplication |
Divide | \frac{a}{b} | Divide |
Power | a^b | Exponentiation |
Root | \sqrt[n]{x}=x^{\frac1n} | nth root |
Sqrt | \sqrt{x}=x^{\frac12} | Square root |
Square | x^2 |
Transcendental Functions
Function | Notation | |
---|---|---|
Exp | \exponentialE^{x} | Exponential function |
Ln | \ln(x) | Logarithm function, the inverse of Exp |
Log | \log_b(x) | ["Log", _v_, _b_] logarithm of base b, default 10 |
Lb | \log_2(x) | Binary logarithm function, the base-2 logarithm |
Lg | \log\_{10}(x) | Common logarithm, the base-10 logarithm |
LogOnePlus | \ln(x+1) |
Rounding
Function | Notation | |
---|---|---|
Abs | \|x\| | Absolute value, magnitude |
Ceil | Rounds a number up to the next largest integer | |
Chop | Replace real numbers that are very close to 0 (less than 10^{-10} ) with 0 | |
Floor | Round a number to the greatest integer less than the input value | |
Round |
Other Relational Operators
["Congruent", a, b, modulus]
Evaluate to True
if a
is congruent to b
modulo modulus
.
["Congruent", 26, 11, 5]
// ➔ True
Other Functions
["BaseForm", value:integer]
["BaseForm", value:integer, base]
Format an integer in a specific base, such as hexadecimal or binary.
If no base is specified, use base-10.
The sign of integer is ignored.
- value should be an integer.
- base should be an integer from 2 to 36.
["Latex", ["BaseForm", 42, 16]]
// ➔ (\text(2a))_{16}
Latex(BaseForm(42, 16))
// ➔ (\text(2a))_{16}
String(BaseForm(42, 16))
// ➔ "'0x2a'"
["Clamp", value]
["Clamp", value, lower, upper]
- If
value
is less thanlower
, evaluate tolower
- If
value
is greater thanupper
, evaluate toupper
- Otherwise, evaluate to
value
If lower
and upper
are not provided, they take the default values of -1 and
+1.
["Clamp", 0.42]
// ➔ 1
["Clamp", 4.2]
// ➔ 1
["Clamp", -5, 0, "+Infinity"]
// ➔ 0
["Clamp", 100, 0, 11]
// ➔ 11
["Max", x1, x2, ...]
["Max", list]
If all the arguments are real numbers, excluding NaN
, evaluate to the largest
of the arguments.
Otherwise, simplify the expression by removing values that are smaller than or equal to the largest real number.
["Max", 5, 2, -1]
// ➔ 5
["Max", 0, 7.1, "NaN", "x", 3]
// ➔ ["Max", 7.1, "NaN", "x"]
["Max", x1, x2, ...]
["Max", list]
If all the arguments are real numbers, excluding NaN
, evaluate to the smallest
of the arguments.
Otherwise, simplify the expression by removing values that are greater than or equal to the smallest real number.
["Min", 5, 2, -1]
// ➔ -1
["Min", 0, 7.1, "x", 3]
// ➔ ["Min", 0, "x"]
["Mod", a, b]
Evaluate to the Euclidian division (modulus) of a
by b
.
When a
and b
are positive integers, this is equivalent to the %
operator in
JavaScript, and returns the remainder of the division of a
by b
.
However, when a
and b
are not positive integers, the result is different.
The result is always the same sign as b
, or 0.
["Mod", 7, 5]
// ➔ 2
["Mod", -7, 5]
// ➔ 3
["Mod", 7, -5]
// ➔ -3
["Mod", -7, -5]
// ➔ -2
["Rational", n]
Evaluate to a rational approximating the value of the number n
.
["Rational", 0.42]
// ➔ ["Rational", 21, 50]
["Rational", numerator, denominator]
Represent a rational number equal to numerator
over denominator
.
["Numerator", expr]
Return the numerator of expr
.
Note that expr
may be a non-canonical form.
["Numerator", ["Rational", 4, 5]]
// ➔ 4
["Denominator", expr]
Return the denominator of expr
.
Note that expr
may be a non-canonical form.
["Denominator", ["Rational", 4, 5]]
// ➔ 5
["NumeratorDenominator", expr]
Return the numerator and denominator of expr
as a sequence.
Note that expr
may be a non-canonical form.
["NumeratorDenominator", ["Rational", 4, 5]]
// ➔ ["Sequence", 4, 5]
The sequence can be used with another function, for example GCD to check if the fraction is in its canonical form:
["GCD", ["NumeratorDenominator", ["Rational", 4, 5]]]
// ➔ 1
["GCD", ["NumeratorDenominator", ["Rational", 8, 10]]]
// ➔ 2