Special Functions

Function Notation
Erf \(\operatorname{Erf}\) \[ z={\frac{2}{\sqrt {\pi }}}\int_{0}^{z}e^{-t^2}\,dt\]
The Error function is the integral of the Gaussian distribution numeric
Erfc \(\operatorname {Erfc} \) \(z=1-\operatorname {Erf} z\)
The Complementary Error Function numeric
Factorial \(n!\) The products of all positive integers less than or equal to \( n\) numeric
Gamma \(\gamma(n)\) \((n-1)!\)
The Gamma Function, an extension of the factorial function to real and complex numbers Q190573 numeric
LogGamma \( \ln(\gamma(n)) \) numeric
SignGamma numeric