Complex
Constants
Symbol | Description | |
---|---|---|
ImaginaryUnit |
\( \imaginaryI \) | The imaginary unit, solution of \(x^2+1=0\) |
Functions
Real
["Real", z]
Evaluate to the real part of a complex number.
["Real", ["Complex", 3, 4]]
// ➔ 3
Imaginary
["Imaginary", z]
Evaluate to the imaginary part of a complex number. If z is a real number, the imaginary part is zero.
["Imaginary", ["Complex", 3, 4]]
// ➔ 4
["Imaginary", "Pi"]
// ➔ 0
Conjugate
["Conjugate", z]
Evaluate to the complex conjugate of a complex number. The conjugates of complex numbers give the mirror image of the complex number about the real axis.
\[ z^\ast = \Re z - \imaginaryI \Im z \]
["Conjugate", ["Complex", 3, 4]]
// ➔ ["Complex", 3, -4]
Abs
["Abs", z]
Evaluate to the magnitude of a complex number.
The magnitude of a complex number is the distance from the origin to the point representing the complex number in the complex plane.
\[ |z| = \sqrt{(\Im z)^2 + (\Re z)^2} \]
["Abs", ["Complex", 3, 4]]
// ➔ 5
Arg
["Arg", z]
Evaluate to the argument of a complex number.
The argument of a complex number is the angle between the positive real axis and the line joining the origin to the point representing the complex number in the complex plane.
\[ \arg z = \tan^{-1} \frac{\Im z}{\Re z} \]
["Arg", ["Complex", 3, 4]]
// ➔ 0.9272952180016122
AbsArg
["AbsArg", z]
Return a tuple of the magnitude and argument of a complex number.
This corresponds to the polar representation of a complex number.
["AbsArg", ["Complex", 3, 4]]
// ➔ [5, 0.9272952180016122]
\[ 3+4\imaginaryI = 5 (\cos 0.9272 + \imaginaryI \sin 0.9272) = 5 \exponentialE^{0.9272}\]
ComplexRoots
["ComplexRoots", z, n]
Retrurn a list of the nth roots of a number z.
The complex roots of a number are the solutions of the equation \(z^n = a\).
- Wikipedia: nth root
- Wikipedia: Root of unity
- Wolfram MathWorld: Root of unity
// The three complex roots of unity (1)
["ComplexRoots", 1, 3]
// ➔ [1, -1/2 + sqrt(3)/2, -1/2 - sqrt(3)/2]