Sets
A set is a collection of distinct elements.
Constants
Symbol | Notation | Definition |
---|---|---|
EmptySet |
\( \varnothing \) or \( \emptyset \) |
Functions
New sets can be defined using a set expression. A set expression is an expression with one of the following head functions.
Function | Operation | |
---|---|---|
CartesianProduct |
\[ \operatorname{A} \times \operatorname{B} \] | A.k.a the product set, the set direct product or cross product. Q173740 |
Complement |
\[ \operatorname{A}^\complement \] | The set of elements that are not in \( \operatorname{A} \). If \(\operatorname{A}\) is a numeric domain, the universe is assumed to be the set of all numbers. Q242767 |
Intersection |
\[ \operatorname{A} \cap \operatorname{B} \] | The set of elements that are in \(\operatorname{A}\) and in \(\operatorname{B}\) Q185837 |
Union |
\[ \operatorname{A} \cup \operatorname{B} \] | The set of elements that are in \(\operatorname{A}\) or in \(\operatorname{B}\) Q173740 |
Set |
\(\lbrace 1, 2, 3 \rbrace \) | Set builder notation |
SetMinus |
\[ \operatorname{A} \setminus \operatorname{B} \] | Q18192442 |
SymmetricDifference |
\[ \operatorname{A} \triangle \operatorname{B} \] | Disjunctive union = \( (\operatorname{A} \setminus \operatorname{B}) \cup (\operatorname{B} \setminus \operatorname{A})\) Q1147242 |
Relations
Function | ||
---|---|---|
Element |
\[ x \in \operatorname{A} \] | |
NotElement |
\[ x \not\in \operatorname{A} \] | |
NotSubset |
\[ A \nsubset \operatorname{B} \] | |
NotSuperset |
\[ A \nsupset \operatorname{B} \] | |
Subset |
\[ \operatorname{A} \subset \operatorname{B} \] \[ \operatorname{A} \subsetneq \operatorname{B} \] \[ \operatorname{A} \varsubsetneqq \operatorname{B} \] |
|
SubsetEqual |
\[ \operatorname{A} \subseteq \operatorname{B} \] | |
Superset |
\[ \operatorname{A} \supset \operatorname{B} \] \[ \operatorname{A} \supsetneq \operatorname{B} \] \[ \operatorname{A} \varsupsetneq \operatorname{B} \] |
|
SupersetEqual |
\[ \operatorname{A} \supseteq \operatorname{B} \] |