Sets

A set is a collection of distinct elements.

Constants

Symbol Notation Definition
EmptySet \( \varnothing \) or \( \emptyset \)

Functions

New sets can be defined using a set expression. A set expression is an expression with one of the following head functions.

Function Operation
CartesianProduct \[ \operatorname{A} \times \operatorname{B} \] A.k.a the product set, the set direct product or cross product. Q173740
Complement \[ \operatorname{A}^\complement \] The set of elements that are not in \( \operatorname{A} \). If \(\operatorname{A}\) is a numeric domain, the universe is assumed to be the set of all numbers. Q242767
Intersection \[ \operatorname{A} \cap \operatorname{B} \] The set of elements that are in \(\operatorname{A}\) and in \(\operatorname{B}\) Q185837
Union \[ \operatorname{A} \cup \operatorname{B} \] The set of elements that are in \(\operatorname{A}\) or in \(\operatorname{B}\) Q173740
Set \(\lbrace 1, 2, 3 \rbrace \) Set builder notation
SetMinus \[ \operatorname{A} \setminus \operatorname{B} \] Q18192442
SymmetricDifference \[ \operatorname{A} \triangle \operatorname{B} \] Disjunctive union = \( (\operatorname{A} \setminus \operatorname{B}) \cup (\operatorname{B} \setminus \operatorname{A})\) Q1147242

Relations

Function
Element \[ x \in \operatorname{A} \]
NotElement \[ x \not\in \operatorname{A} \]
NotSubset \[ A \nsubset \operatorname{B} \]
NotSuperset \[ A \nsupset \operatorname{B} \]
Subset \[ \operatorname{A} \subset \operatorname{B} \]
\[ \operatorname{A} \subsetneq \operatorname{B} \]
\[ \operatorname{A} \varsubsetneqq \operatorname{B} \]
SubsetEqual \[ \operatorname{A} \subseteq \operatorname{B} \]
Superset \[ \operatorname{A} \supset \operatorname{B} \]
\[ \operatorname{A} \supsetneq \operatorname{B} \]
\[ \operatorname{A} \varsupsetneq \operatorname{B} \]
SupersetEqual \[ \operatorname{A} \supseteq \operatorname{B} \]