Domains

Numeric Domains

Domain Notation Description
AlgebraicNumbers \[ \mathbb{A} \] Numbers that are the root of a polynomial
ComplexNumbers \[ \mathbb{C} \] Real or imaginary numbers
Integers \[ \mathbb{Z}\] Whole numbers and their additive inverse \(\lbrace \ldots -3, -2, -1,0, 1, 2, 3\ldots\rbrace\)
NegativeIntegers \[ \Z^- \] Integers \( \lt 0\), \(\lbrace \ldots -3, -2, -1\rbrace\)
NegativeNumbers \[ \R^- \] Real numbers \( \lt 0 \)
NonNegativeIntegers \[ \Z^{0+} \] Integers \( \geq 0 \), \(\lbrace 0, 1, 2, 3\ldots\rbrace\)
NonNegativeNumbers \[ \R^{0+} \] Real numbers \( \geq 0 \)
NonPositiveIntegers \[ \Z^{0-} \] Integers \( \leq 0 \), \(\lbrace \ldots -3, -2, -1, 0\rbrace\)
NonPositiveNumbers \[ \R^{0-} \] Real numbers \( \leq 0 \)
Numbers Any number, real or complex
PositiveIntegers \[ \Z^{+} \] Integers \( \gt 0 \), \(\lbrace 1, 2, 3\ldots\rbrace\)
PositiveNumbers \[ \R^{+} \] Real numbers \( \gt 0 \)
RationalNumbers \[ \mathbb{Q}\] Numbers which can be expressed as the quotient \(p / q\) of two integers \(p, q \in \mathbb{Z}\).
RealNumbers \[ \mathbb{R} \] Numbers that form the unique Dedekind-complete ordered field \( \left( \mathbb{R} ; + ; \cdot ; \lt \right) \), up to an isomorphism
TranscendentalNumbers \[ \mathbb{T} \] Real numbers that are not algebraic

Function Domains

Domain Description
Predicates A function with a codomain of MaybeBoolean
LogicalFunction A predicate whose arguments are in the MaybeBoolean domain, for example the domain of And is LogicalFunction

Other Domains

Domain Description
Anything The universal domain, it contains all possible values
Booleans | TrueorFalse` |
Domains The domain of all the domains
MaybeBooleans True False or Maybe
Nothing The domain whose only member is the symbol Nothing
Strings A string of Unicode characters
Symbols A string used to represent the name of a constant, variable or function in a MathJSON expression